Optimizing the Operation and Deployment of Battery Energy Storage

Daniel Kirschen University of Washington

Reliable supply

Maximize profits I

Minimize cost

Balance Economics and Reliability

Be Green

Stochasticity?

© Daniel Kirschen & University of Washington

Is battery energy storage the solution?

What can we do with battery energy storage?

- Arbitrage
 - -Buy low, Sell high
 - -Charge when the sun shines, discharge in the evening
- Frequency regulation
 - -Fast power electronics control
- Reserve capacity
 - -Help deal with contingencies
- Peaking capacity
 - -Avoid building expensive generators
- Mitigate transmission congestion
 - -Avoid building new lines
- Provide resiliency

Will power stems be replaced by energy systems?

© Daniel Kirschen & University of Washington

Q: How can we make money with storage?

A: Currently, with some difficulty

© Daniel Kirschen & University of Washington

What are the issues?

- High investment cost
- Low efficiency
- Uncertainty about competing technologies
- Battery degradation

Using storage for arbitrage

- Need large price differences to cover:
 - Losses in the battery
 - Investment cost

- Focus on spatio-temporal arbitrage
 - Congestion amplifies price differences
 - Where should the battery be located?
- What are the optimal locations and sizes of batteries in a congested transmission network?

Optimal from which perspective?

Optimal from which perspective?

- Perspective leads to different problem formulations
 - Problem 1: SO perspective
 - Problem 2: Mixed SO-ESO perspective
 - Problem 3: ESO with transmission expansion

Problem I: System Operator's Perspective

- SO invests in storage to maximize welfare
 - Benevolent monopolist
- SO's objective:

Minimize (operating cost + investment cost in energy storage)

- Subject to constraints on:
 - Investments in energy storage
 - Operation of energy storage
 - System operation: generation and transmission limits
- Consider stochastic renewable generation
- Consider congestion in the transmission network
 dc model
- Formulation scalable to systems with 1000's of buses

Problem I: Test System and Data

- Three storage investment cost scenarios (ARPA-E): –High: \$75/kWh and \$1300/kW
 –Medium: \$50/kWh and \$1000/kW
 –Low: \$20/kWh and \$500/kW
- Round-trip efficiency of 0.81
- 10-year lifetime
- 5% annual interest rate
- 2024 WECC system
 - -240 buses, 448 lines, 71 thermal generators
 - -32 wind power and 7 solar power plants

SO Perspective: Impact of the Capital Cost

The investment cost is the primary driver of sizing decisions As the capital cost increases, the installed storage capacity decreases

SO Perspective: Impact of Wind Spillage

VoRS: Value of Renewable Spillage

Rate-of-return (Profit/Cost) is sensitive to value of wind spillage

SO Perspective: Impact of Wind Spillage

Insufficient profit from spatio-temporal arbitrage under the high capital cost scenario

© Daniel Kirschen & University of Washington

Problem II: Mixed SO+ESO Perspective

- Optimal location and size of merchant energy storage in a centrally operated system
- Modified integrated optimization

 Minimize (operating cost + cost of investment in storage)
 Subject to constraints on operation and investments
- Add a minimum profit constraint:
 - -Lifetime net revenue $\geq \chi$ ·Investment Cost
 - $-\chi$ is a given rate of return

Problem II: Bilevel Formulation

Problem II: Test System and Data

- 8-zone model of the ISO NE system
 - -8 market zones
 - -13 transmission corridors
 - -76 thermal generators
 - -2030 renewable portfolio & load expectations
- ARPA-e projections on storage cost and characteristics

Problem II: Impact of the Rate of Return

- Lifetime Profit $\geq \chi$ ·Investment Cost
 - $-If \chi > 1 \rightarrow Storage investment is profitable$
 - $-If \chi = 0 \rightarrow Same solution as problem I$
- Profit constraint affects both the siting and sizing decisions
 - Reduction in the total energy capacity installed
 - -More diversity in locations

Problem II: Impact of the Capital Cost

- Results are strongly affected by the capital cost
- Total installed capacity of storage decreases when cost increases
- Under the highest capital cost scenario, storage is placed at the bus with the highest intraday LMP variability

Case III: Merchant ESO Perspective

- ESO chooses the optimal locations and sizes that maximize its profits
- SO minimizes the system operating cost
- Effect of transmission expansion?
- Formulation:
 - ESO maximizes (Lifetime net revenue of ES Cost of investment in storage)
 - SO minimizes (Operating cost + Cost of investment in transmission expansion)
- Constraints
 - System operation
 - Investments in energy storage
 - Profitability constraint: Revenue $\geq \chi$ ·Investment Cost

Trilevel Formulation

Solved using a CCG-type decomposition

Problem III: Test System and Data

- Three storage investment cost scenarios (ARPA-E): –High: \$75/kWh and \$1300/kW
 –Medium: \$50/kWh and \$1000/kW
 –Low: \$20/kWh and \$500/kW
- Round-trip efficiency of 0.81
- 10-year lifetime
- 5% annual interest rate
- 2024 WECC system
 - -240 buses, 448 lines, 71 thermal generators
 - -32 wind power and 7 solar power plants

Effect of Transmission Expansion

Added line capacity, GW Added storage capacity, GW

• Siting of 10 batteries for problems I, II, and III on the same WECC-240 system with the same input data:

- Best locations on optimization perspective
- Merchant storage will not locate batteries at the best locations from a system perspective

Battery Degradation

- Battery manufacturers provide a warranty
 - -XXXX charge/discharge cycles

-YY years

- But cycle characteristics are usually carefully defined
 -1 cycle per day
 -80% depth of discharge
- Usually not the way we want to use the battery

Cost of battery degradation

- Cost of replacing the battery at the end of its life
- Fixed life (cycles per manufacturer's warranty)
 → treat degradation cost as a capital cost
- Variable life (irregular cycles)
 - \rightarrow treat degradation cost as an operating cost
- Need a predictive cost model that can be used to optimize battery operation

-Is this charge/discharge cycle worth it?

Battery Degradation Factors

Cycle aging

Heuristic model of cycle aging

- Based on experimental data
- $\Psi(d)$: how much battery life is lost after a cycle with depth "d"

$$\Psi(d) = k_1 d^{k_2}$$

• Total cycle life loss after a series of cycle depths d_1, \dots, d_N

$$\sum_{i=1}^{N} \Psi(d_i)$$

Battery cycle life curve

[©] Daniel Kirschen & University of Washington

A simple example

Same example with deeper cycles

Incorporating cycle aging in dispatch

- Perspective of a battery owner
 Optimizes its bids & offers to maximize actual profit
- Assumptions:
 - -Has perfect forecast of prices
 - -Acts as a price taker
 - -Revenue opportunities:
 - Energy arbitrage
 - Provision of reserve

Prices for energy arbitrage

(Data: ISO New England)

Reserve market

- Commitment to increase or decrease output in case of a generator outage or a sudden change in renewable production
- Remunerated separately from energy market
- Limits storage's ability to perform arbitrage:
 - -Power capacity (MW)
 - -Energy capacity (MWh)

Problem formulation

Cycle aging cost

Constraints

Constraints on dispatch:

$$\begin{aligned} d_t &= \sum_{j=1}^J p_{t,j}^{\mathrm{ch}} \eta^{\mathrm{ch}} \\ g_t &= \sum_{j=1}^J p_{t,j}^{\mathrm{dis}} / \eta^{\mathrm{dis}} \\ d_t &\leq D(1 - v_t) \\ g_t &\leq G v_t \\ e_{t,j} - e_{t-1,j} &= M(p_{t,j}^{\mathrm{ch}} - p_{t,j}^{\mathrm{dis}}) \\ e_{t,j} &\leq \overline{e}_j \\ E^{\min} &\leq \sum_{j=1}^J e_{t,j} &\leq E^{\max} \\ e_{1,j} &= e_j^0 \\ \sum_{j=1}^J e_{T,j} &\geq E^{\mathrm{final}} \end{aligned}$$

Constraints on reserve:

$$\begin{split} d_t - d_t^{\mathbf{q}} &\leq D(1 - u_t) \\ g_t - g_t^{\mathbf{q}} &\leq G(1 - u_t) \\ d_t^{\mathbf{q}} &\leq Du_t \\ g_t^{\mathbf{q}} &\leq Du_t \\ g_t^{\mathbf{q}} &\leq Gu_t \\ g_t^{\mathbf{q}} + q_t - d_t^{\mathbf{q}} &\leq Gu_t \\ q_t &\geq \varepsilon u_t \\ S(g_t^{\mathbf{q}} + q_t - d_t^{\mathbf{q}}) &\leq \sum_{j=1}^J \overline{e}_j \,, \end{split}$$

Storage dispatch ignoring cycle aging cost

Real-time market prices over 48 hours

Power output

State of charge

Cycle aging cost

Storage dispatch with 1-block cycle aging

© Daniel Kirschen & University of Washington

Cycle aging cost

Storage dispatch with 2-block cycle aging

Storage dispatch with 4-block cycle aging

Storage dispatch with 16-block cycle aging

Profitability considering cycle aging

- Simulation over a full year of ISO New England market prices
- Energy and reserve markets
 - -Day-ahead market (DAM) no reserve, hourly prices
 - -Real-time market (RTM) 5-minute prices
- Battery data
 - -Charging/discharging power rating: 20 MW
 - -Energy capacity rating: 12.5 MWh
 - -Charging and discharging efficiency: 95%
 - -Maximum state of charge: 95%
 - –Minimum state of charge: 15%
 - -Battery cycle life: 3000 cycles at 80% depth
 - -Battery shelf life: 10 years
 - -Battery pack replacement cost: 300,000 \$/MWh

Arbitrage in day ahead market

Optimization ignoring cycle aging

Annual market revenue (k\$)	138.8
Annual loss of life from cycling (%)	24.4
Annual cycle aging cost (k\$)	-913.8
Annual profit (k\$)	-775.0
Remaining battery life (year)	2.9

Ignoring cycle aging causes an actual loss

Arbitrage in day ahead market

Optimization considering cycle aging

Annual revenue from arbitrage (k\$)	138.8	21.3
Annual loss of life from cycling (%)	24.4	0.3
Annual cycle aging cost (k\$)	-913.8	-11.3
Annual profit (k\$)	-775.0	10
Remaining battery life (year)	2.9	9.7

Profit is positive but insufficient

Real-time market: arbitrage + reserve

Optimization ignoring cycle aging

Annual revenue from arbitrage (k\$)	789.3
Annual revenue from reserve (k\$)	13.8
Annual loss of life from cycling (%)	77.0
Annual cycle aging cost (k\$)	-2887.5
Annual profit (k\$)	-2101.3
Proportion of profit from reserve (%)	-
Remaining battery life (year)	1.1

Real-time price volatility increases revenues and battery degradation

© Daniel Kirschen & University of Washington

Real-time market: arbitrage + reserve

Optimization considering cycle aging

Annual revenue from arbitrage (k\$)	789.3	372.3
Annual revenue from reserve (k\$)	13.8	29.8
Annual loss of life from cycling (%)	77.0	2.6
Annual cycle aging cost (k\$)	-2887.5	-96.3
Annual profit (k\$)	-2101.3	276.3
Proportion of profit from reserve (%)	-	40.2
Remaining battery life (year)	1.1	8.0

Providing reserve is more profitable because it does not cause battery cycle aging

Conclusions

- Batteries can have value for the system while not being profitable
- Arbitrage currently requires very large price differences to be profitable
- Battery degradation must be considered when calculating actual profitability
- Provision of reserve (and frequency regulation) are currently more profitable than arbitrage

Acknowledgements

- Former PhD students and postdocs:
 - -Prof. Yury Dvorkin (NYU)
 - -Prof. Ricardo Fernandez-Blanco (Univ. de Malaga)
 - Prof. Hrvoje Pandzic (University of Zagreb)
 - –Dr. Bolun Xu (MIT)
 - -Dr. Yishen Wang (GEIRINA)
 - -Dr. Ting Qiu (ERCOT)

Funding:

- DOE ARPA-E
- Sandia National Lab

- Sandia National Lab:
 - -Dr. Cesar Silva Monroy
 - -Dr. Jean-Paul Watson
- US Department of Energy: –Dr. Tim Heidel
- ISO New England:
 - Dr. Jinye Zhao,
 - Dr. Tongxin Zheng
 - Dr. Eugene Litvinov

