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Intermittency?
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Stochasticity?

A\ L\ LY
R e wa R L. THRNT e

© Daniel Kirschen & University of Washington



© Daniel Kirschen & University of Washington



Is battery energy storage the solution?
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What can we do with battery energy storage?

* Arbitrage
—Buy low, Sell high
—Charge when the sun shines, discharge in the evening
* Frequency regulation
—Fast power electronics control
* Reserve capacity
—Help deal with contingencies
« Peaking capacity
—Avoid building expensive generators
 Mitigate transmission congestion
—Avoid building new lines

* Provide resiliency
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Q: How can we make money with storage?

A: Currently, with some difficulty



What are the issues?

* High Investment cost
* Low efficiency
» Uncertainty about competing technologies

» Battery degradation



Using storage for arbitrage

* Need large price differences to cover:
— Losses in the battery

— Investment cost i% =S Iy SS-SH

5 YLOW

* Focus on spatio-temporal arbitrage
— Congestion amplifies price differences
— Where should the battery be located?

* What are the optimal locations and sizes of
batteries in a congested transmission network?
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Optimal from which perspective?
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Optimal from which perspective?

* Perspective leads to different problem formulations

— Problem 1: SO perspective
— Problem 2: Mixed SO-ESO perspective

— Problem 3: ESO with transmission expansion
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Problem |. System Operator’s Perspective

« SO Invests In storage to maximize welfare
— Benevolent monopolist
« SO’s objective:
Minimize (operating cost + investment cost in energy storage)
« Subject to constraints on:
— Investments in energy storage

— Operation of energy storage
— System operation: generation and transmission limits

« Consider stochastic renewable generation

« Consider congestion in the transmission network
— dc model

* Formulation scalable to systems with 1000’s of buses
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Problem I: Test System and Data

* Three storage investment cost scenarios (ARPA-E):
—High: $75/kWh and $1300/kW
—Medium: $50/kWh and $1000/kW
—Low: $20/kWh and $500/kwW

* Round-trip efficiency of 0.81
» 10-year lifetime
* 50 annual interest rate

« 2024 WECC system
—240 buses, 448 lines, 71 thermal generators
—32 wind power and 7 solar power plants
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SO Perspective: Optimal Siting and Sizing
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SO Perspective: Optimal Siting and Sizing
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SO Perspective: Optimal Siting and Sizing
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SO Perspective: Impact of the Capital Cost
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The investment cost is the primary driver of sizing decisions
As the capital cost increases, the installed storage capacity decreases
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SO Perspective: Impact of Wind Spillage

Low investment cost
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Rate-of-return (Profit/Cost) is sensitive to value of wind spillage

© Daniel Kirschen & University of Washington



SO Perspective: Impact of Wind Spillage

Insufficient profit from spatio-temporal arbitrage
under the high capital cost scenario
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Problem Il: Mixed SO+ESQO Perspective

* Optimal location and size of merchant energy storage in
a centrally operated system

« Modified integrated optimization
—Minimize (operating cost + cost of investment in storage)
—Subject to constraints on operation and investments

* Add a minimum profit constraint:
—Lifetime net revenue > y -Investment Cost
—y IS a given rate of return
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Problem II: Bilevel Formulation

Decisions on

Upper Level: Storage
Investments

Storage Locational Marginal Prices
bids/offers Accepted bids/offers

Operation for

Lower Level:

Typical Days
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Problem II: Test System and Data

« 8-zone model of the ISO NE
system
—8 market zones
—13 transmission corridors
—76 thermal generators

—2030 renewable portfolio & load
expectations

 ARPA-e projections on storage | 7

cost and characteristics Zw W e w
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Problem II: Impact of the Rate of Return

* Lifetime Profit > y -Investment Cost

—If y > 1 - Storage investment is
profitable

—If y = 0 - Same solution as problem |

* Profit constraint affects both the
siting and sizing decisions

—Reduction in the total energy capacity
installed

—More diversity in locations

© Daniel Kirschen & University of Washington
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Problem Il: Impact of the Capital Cost

* Results are strongly affected by
the capital cost
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© Daniel Kirschen & University of Washington



Case lll: Merchant ESO Perspective

« ESO chooses the optimal locations and sizes that maximize
Its profits

« SO minimizes the system operating cost

« Effect of transmission expansion?

« Formulation:
— ESO maximizes (Lifetime net revenue of ES — Cost of investment in storage)

— SO minimizes (Operating cost + Cost of investment in transmission
expansion)

* Constraints

— System operation
— Investments in energy storage
— Profitability constraint: Revenue > y -Investment Cost
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Trilevel Formulation

Storage bids/offers

Upper Level
Merchant

Storage
Investments

LMPs, accepted
storage bids/offers

Solved using a CCG-type decomposition
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Problem lll: Test System and Data

* Three storage investment cost scenarios (ARPA-E):
—High: $75/kWh and $1300/kW
—Medium: $50/kWh and $1000/kW
—Low: $20/kWh and $500/kW

* Round-trip efficiency of 0.81
 10-year lifetime
* 50 annual interest rate

« 2024 WECC system
—240 buses, 448 lines, 71 thermal generators
—32 wind power and 7 solar power plants
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Effect of Transmission Expansion

Low| 0.74GWh{ Low} - 0.44 GWh
Medf | || 0.30Gwh { Med} ~0.25GWh
Hight High f
5 25 0 025 5 25 0 025
GW GW
Expand lines connected Expand all lines

to storage only

Added line capacity, GW [l Added storage capacity, GW
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Comparison

» Siting of 10 batteries for problems [, |I, and !!| on the
same WECC-240 system with the same input data:

* Best locations on optimization perspective

« Merchant storage will not locate batteries at the best
locations from a system perspective
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Battery Degradation

 Battery manufacturers provide a
warranty
—XXXX charge/discharge cycles
—YY years

 But cycle characteristics
are usually carefully defined
—1 cycle per day
—80% depth of discharge

« Usually not the way we want to
use the battery
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Cost of battery degradation

 Cost of replacing the battery at the end of its life
* Fixed life (cycles per manufacturer’s warranty)
- treat degradation cost as a capital cost
* Variable life (irregular cycles)
—> treat degradation cost as an operating cost

* Need a predictive cost model that can be used
to optimize battery operation
—Is this charge/discharge cycle worth it?



Battery Degradation Factors

« Calendar life )
 Ambient temperature

* Humidity

* Over charge > Not affected by battery cycling
* Over discharge
 Cell temperature
» Current ra

* Cycle average state of charge (SoC) Atfected by
) decisions

Cycle aging
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Heuristic model of cycle aging

- Based on experimental data

* ¥(d) : how much battery life is
lost after a cycle with depth “d”

W(d) = k,d*

* Total cycle life loss after a
series of cycle depths d;, ...

N
D w(d)
=1

)dN
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Battery cycle life curve

cycle life curve
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A simple example
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Same example with deeper cycles

Case 1
Case 2
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Incorporating cycle aging in dispatch

* Perspective of a battery owner
—Optimizes its bids & offers to maximize actual profit

* Assumptions:
—Has perfect forecast of prices
—Acts as a price taker

—Revenue opportunities:
* Energy arbitrage
 Provision of reserve
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Prices for energy arbitrage
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Reserve market

« Commitment to increase or decrease output in case of a
generator outage or a sudden change in renewable
production

 Remunerated separately from energy market

* Limits storage’s ability to perform arbitrage:
—Power capacity (MW)
—Energy capacity (MWh)
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Problem formulation

Objective

11N ax
p.g.d.q.e.v.u
§ )
Y
Dispatch
variables
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aging
cost
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Cycle aging cost
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Constraints

Constraints on dispatch:
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Storage dispatch ignoring cycle aging cost

Real-time
market prices
over 48 hours

Power output

State of charge
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Cycle aging cost
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Storage dispatch with 1-block cycle aging
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Cycle aging cost
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Storage dispatch with 2-block cycle aging
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Storage dispatch with 4-block cycle aging

Price

Power output

State of charge
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Storage dispatch with 16-block cycle aging

200
100 —

Price °r

100 —

200 x x x x x x x x x
5 10 15 20 25 30 35 40 45 [hr]

Power output

State of charge

N & 2 g B
E

0
© Daniel Kirschen & University of Washington 0 5 10 15 20 25 30 35 40 45 (hr]



Profitability considering cycle aging

« Simulation over a full year of ISO New England market prices

* Energy and reserve markets
—Day-ahead market (DAM) no reserve, hourly prices
—Real-time market (RTM) 5-minute prices

- Battery data
—Charging/discharging power rating: 20 MW
—Energy capacity rating: 12.5 MWh
—Charging and discharging efficiency: 95%
—Maximum state of charge: 95%
—Minimum state of charge: 15%
—Battery cycle life: 3000 cycles at 80% depth
—Battery shelf life: 10 years
—Battery pack replacement cost: 300,000 $/MWh
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Arbitrage in day ahead market

Optimization ignoring cycle aging

Annual market revenue (k$) 138.8
Annual loss of life from cycling (%) 24.4
Annual cycle aging cost (k$) -913.8
Annual profit (k$) -775.0
Remaining battery life (year) 2.9

Ignoring cycle aging causes an actual loss
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Arbitrage in day ahead market

Optimization considering cycle aging

$

Annual revenue from arbitrage (k9$) 138.8 21.3
Annual loss of life from cycling (%) 24.4 0.3
Annual cycle aging cost (k$) -913.8| -11.3
Annual profit (k$) -775.0 10
Remaining battery life (year) 2.9 9.7

Profit Is positive but insufficient

© Daniel Kirschen & University of Washington




Real-time market: arbitrage + reserve

Optimization ignoring cycle aging

Annual revenue from arbitrage (k$) 789.3

Annual revenue from reserve (k$) 13.8

Annual loss of life from cycling (%) 77.0

Annual cycle aging cost (k$) -2887.5

Annual profit (k$) -2101.3

Proportion of profit from reserve (%)

Remaining battery life (year) 1.1

Real-time price volatility increases revenues

and battery degradation
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Real-time market: arbitrage + reserve

Optimization considering cycle aging

Annual revenue from arbitrage (k%) 789.3| 372.3
Annual revenue from reserve (k$) 13.8 29.8
Annual loss of life from cycling (%) 77.0 2.6
Annual cycle aging cost (k$) -2887.5| -96.3
Annual profit (k$) -2101.3| 276.3
Proportion of profit from reserve (%) - 40.2
Remaining battery life (year) 1.1 8.0

Providing reserve is more profitable because
It does not cause battery cycle aging
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Conclusions

 Batteries can have value for the system while not being
profitable

* Arbitrage currently requires very large price differences
to be profitable

 Battery degradation must be considered when
calculating actual profitability

 Provision of reserve (and frequency regulation) are
currently more profitable than arbitrage
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