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Imperial College London: Research on Power Systems 
•  Imperial College London: #8 in THE World 

University Rankings 

• Department of Electrical and Electronic 
Engineering, Control and Power group 

• Power systems: 6 academics, 3 research 
fellows, ~15 RAs, ~40 PhD students  

• MSc program on Future Power Networks 

• Energy Futures Lab: multidisciplinary 
research on tackling energy challenges 

• Research projects: UK EPSRC, EC H2020, 
UK-China, UK-Korea, UK-India initiatives 

•    

•  Imperial Consultants: close collaboration 
with energy industry 



Motivation: Fundamental changes in 
power systems’ operation and planning  

• Smart Grid concept: 
Ø Integration of vast number of small-scale flexible demand and 

energy storage technologies in system operation and planning 
Ø Cannot be addressed through traditional centralised control 

approaches, due to scalability and privacy limitations 
Ø Need for decentralised optimisation approaches 

• Deregulation of electricity sector: 
Ø Moving away from competitive models optimizing system-wide 

objectives (maximizing of social welfare)… 
Ø …to models optimizing objectives (maximizing individual profit) 

of strategic, price-making players 
Ø Need for game-theoretic modeling approaches 



DECENTRALISED COORDINATION OF 
FLEXIBLE LOADS  



Flexible loads 



•  Flexibility is associated with the 
maximum instantaneous power limit 

• Example: smart-charging electric 
vehicles 

•  Flexibility is associated with the 
maximum cycle delay limit 

• Example: dishwashers with delay 
functionality 

Types of flexible loads 
Continuously adjustable power Deferrable cycles 



Traditional, centralised coordination approach  

Central coordinator: 
Global optimization 

SCALABILITY? 

PRIVACY? 



Update price signals 
by maximizing dual 
function 

Optimal solution 
found? 

no 

Price signals 

Response 

Decentralised, price-based coordination approach 
Mathematical 
formulation 
based on dual 
decomposition 
principles 



Demand response concentration effect 
• Flexible loads’ 

response is 
concentrated at the 
lowest-priced periods 
Ø New demand 

peaks, higher costs, 
higher network 
losses 

Ø Concentration effect 
enhanced with 
higher number, 
higher flexibility and 
lower diversity of 
flexible loads 
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•  Impose relative flexibility restriction ω 
Ø Loads with continuously adjustable power: maximum power 

restriction 
Ø Loads with deferrable cycles: maximum cycle delay restriction 

• Apply non-linear / flexibility price α 
Ø Loads with continuously adjustable power: penalize square of 

power 
Ø Loads with deferrable cycles: penalize duration of cycle delay 

• Apply differentiated price signals to different loads 
Ø Randomise prices following normal distribution (with standard 

deviation σ)  

Novel contribution: Strategies against response concentration 



• Trade-off between: 
Ø Avoiding demand 

response 
concentration 

Ø Filling the off-peak 
valleys 

Tuning strategies’ parameters 
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• Network 
congestion and 
losses…> location-
specific tuning? 
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Ø Flexibility pricing 
slightly outperforms 
flexibility restriction 
Ø Randomised pricing 
does not bring 
additional benefits 

Performance of different measures depends on  flexible loads’ 
operational properties 
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Flexibility restriction Flexibility pricing 
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Flexibility pricing Randomised flexibility pricing 

Electric vehicles 

Wet appliances Ø Flexibility restriction 
and flexibility pricing 
have similar 
performance 
Ø Randomised pricing 
brings significant 
additional benefits 
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GAME-THEORETIC MODELLING OF 
OPERATION AND PLANNING 



Motivation 
• Deregulation of the electricity sector 

Ø Unbundling of vertically integrated utilities 
Ø Introduction of competition in generation, supply (and maybe 

network) sectors 
• Need to move away from traditional competitive operation and 
planning models optimizing system-wide objectives (maximizing 
social welfare)… 

• …to models capturing the strategic, price-making objectives of 
multiple independent energy market players (maximizing profit) 
and identifying the system conditions emerging from the 
interaction of these self-interested players 
Ø Non-cooperative game-theoretic modelling approaches 

constitute a natural choice 
 



Bi-level optimization model of strategic behaviour 

Lower Level (LL) problem:  
Market clearing process 
 
Max   Social welfare 
subject to: 
•  System constraints 
•  Individual players’ constraints 

Upper Level (UL) problem:  
Profit maximization of strategic player 
 
Max  Profit of strategic player 
subject to: 
•  Strategic player’s constraints 

Prices/dispatch  Strategic action  

MPEC problem:  
Profit maximization of strategic player 
 
Max  Profit of strategic player 
subject to: 
•  Strategic player’s constraints 
•  LL-equivalent KKT optimality 

conditions 

Lower Level (LL) problem:  
Market clearing process 
 
Max   Social welfare 
subject to: 
•  System constraints 
•  Individual players’ constraints 

Bi-level problem: 

MPEC is complex, highly non-linear > need 
for linearization / decomposition techniques 



Existence, 
uniqueness and 
convergence to 
NE are not 
generally 
guaranteed ! > 
need for heuristics 

Strategy of 
player 1 

r = 0 

Player 1: MPEC Player 2: MPEC Player N: MPEC 

Strategy of 
player 2 

…… 

Strategy of 
player N 

Strategies 
converged ? 

Yes 

No 

Store as NE 

r = r + 1 

Equilibrium programming: Finding Nash Equilibria (NE) 

Novel contribution: expand this modelling 
framework to consider multiple time periods 
(and time-coupling constraints of demand 
and storage) as well as network constraints 



Impact of flexible demand on producers’ market power  
•  Impact of varying 
demand flexibility 
levels on system 
demand 

•  Impact of varying 
demand flexibility 
on producers’ 
market power 
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Impact of flexible demand on producers’ market power  
•  Impact of 
congestion and 
demand flexibility 
location on 
producers’ market 
power 

•  Impact of 
congestion and 
demand flexibility 
location on market 
efficiency 
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•  Impact of storage 
size on its market 
power potential 

•  Impact of storage 
location on its 
market power 
potential 

Exercise of market power by strategic storage through capacity 
withholding 
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Impact of flexible demand on generation planning 
•  Impact of varying 
demand flexibility 
levels on 
generation mix 

•  Impact of varying 
demand flexibility 
on total 
(investment and 
operation) system 
cost 
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Game-theoretic modelling of decentralised network planning 

Player 
Players’ capacity contribution per branch (MW) 

B1 B3 B4 B6 B7 B8 B9 B10 

Scot. G 220 70 830 2020 2670 420 0 270 

Eng. G 0 0 0 0 0 0 0 0 

Scot. D 0 0 0 0 0 0 0 0 

Eng. D 440 320 10 1150 900 140 3790 3080 

North: low cost 
generation and 
small demand  

South: high cost generation and 
large  demand 

0,0% 
1,0% 
2,0% 
3,0% 
4,0% 
5,0% 
6,0% 
7,0% 

350 
400 
450 
500 
550 
600 
650 
700 
750 
800 

1 2 3 4 5 6 7 8 9 10 D
ev

ia
tio

n 
fr

om
 c

en
tra

liz
ed

 
sy

st
em

 c
os

t (
%

) 

To
ta

l n
et

w
or

k 
ca

pa
ci

ty
 (M

W
) 

Number of merchant transmission companies 
Total network capacity 
Deviation from centralized system cost 



Ø Y. Ye, D. Papadaskalopoulos and G. Strbac, “Investigating the Impact of Demand 
Shifting on Electricity Producers’ Market Power,” IEEE Transactions on Power Systems, 
submitted. 

Ø Y. Ye, D. Papadaskalopoulos and G. Strbac, “An MPEC approach for analysing the 
impact of energy storage in imperfect electricity markets,” 13th International Conference 
on the European Energy Market, 2016. 

Ø D. Papadaskalopoulos, Y. Ye, R. Moreira and G. Strbac, “Strategic Capacity Withholding 
by Energy Storage in Electricity Markets,” 12th PowerTech Conference, 2017. 

Ø Y. Fan, D. Papadaskalopoulos and G. Strbac, “A game theoretic modeling framework for 
decentralized transmission planning,” 19th Power Systems Computation Conference 
(PSCC), 2016.  

Ø A. de Paola, D. Papadaskalopoulos and G. Strbac, “Investigating the Social Efficiency of 
Merchant Transmission Planning through a Non-Cooperative Game-Theoretic 
Framework,” IEEE Transactions on Power Systems, submitted. 

Relevant publications 



Ø Need to consider multiple sectors (generation, transmission, 
distribution) and timescales (long-term planning to real-time 
balancing) simultaneously 

Ø Incorporate uncertainties and risk perceptions of strategic players 
in their decision making problems > need for stochastic / robust 
reformulations 

Ø Existing models cannot deal with a very large number of strategic 
players due to computational / convergence challenges > explore 
games with a continuum of players and mean-field game theory 

Ø Rational behaviour assumption is not always valid > insights from 
behavioural economics and applied sociology 

Future work directions in market modelling 
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